Física 2º Bachillerato

Óptica geométrica. Introducción

Objetivo

Conocer los cambios de dirección que experimenta la luz mediante representaciones geométricas.

Fundamentos de la óptica geométrica

Rayo: Línea perpendicular al frente de ondas. Si dos rayos se cortan continúan su camino sin modificarse, como si no se hubieran cortado.

Índice de refracción: Relación entre la velocidad de la luz en el vacío y en el medio n = c/v Leyes experimentales de la reflexión y la refracción.

Principio de Fermat: la luz entre dos puntos describe la trayectoria en la que emplea menos tiempo; en un medio homogéneo e isótropo se propaga en línea recta.

Principio de reversibilidad de la luz. El camino seguido por la luz entre dos puntos no depende del sentido en que se propaga.

Terminología

Sistema óptico: Conjunto de superficies que separan medios distintos

Sistema óptico centrado: Conjunto de superficies que separan medios distintos con sus centros de curvatura alineados. A la línea que une esos centros se la denomina eje óptico o principal del sistema.

Dioptrio: Superficie que separa dos medios; las superficies pueden ser esféricas, planas, parabólicas...

Espejo: Superficie que refleja toda la luz que le llega; pueden ser esféricos, planos, parabólicos...

Lente: Sistema formado por dos dioptrios. Pueden ser delgadas o gruesas, convergentes o divergentes...

Instrumentos ópticos: Sistemas formados por asociaciones de lentes y o espejos.

Punto objeto: Sistema que emite luz.

Punto imagen: Punto en el que convergen los rayos procedentes del objeto o sus prolongaciones tras pasar por el sistema óptico.

Imagen directa o invertida: Según sea la posición relativa de la imagen con relación al objeto.

Imagen real o virtual: Si los rayos se cortan al pasar el sistema óptico o se cortan sus prolongaciones.

Aumento lateral: Relación entre los tamaños de la imagen y del objeto.

Aumento angular: Relación entre los ángulos con el que se ven la imagen y el objeto

Sistema estigmático: La imagen de un punto es otro punto.

Sistema astigmático: La imagen de un punto es una zona.

Sistema óptico perfecto: Objeto e imagen son proporcionales en todas sus dimensiones.

Centro óptico S. Punto de corte del eje principal con la superficie del dioptrio.

Plano principal: Plano que pasa por S perpendicular al eje principal.

Foco objeto F . Punto tal que los rayos que pasan por él y después atraviesan el sistema óptico salen paralelos al eje óptico. (La imagen de F está en el infinito).

Distancia focal objeto f : Es la distancia del foco objeto F al centro óptico S.

Foco imagen F': Punto en el que convergen los rayos o las prolongaciones de los mismos después de atravesar el sistema óptico si venían paralelos al eje óptico. (La imagen del infinito está en F')

Distancia focal imagen f': Es la distancia del foco imagen F' al centro óptico S.

Representación: Los puntos se representan con letras mayúsculas, las distancias con letras minúsculas, los ángulos con el alfabeto griego. Las magnitudes objeto e imagen se representan con sus correspondientes símbolos y las magnitudes imagen con el mismo símbolo con tilde.

Criterios de signos

Marcha de los rayos. La luz viaja de izquierda a derecha

Origen de medidas en S. Signo de las distancias. Positivo hacia la derecha y hacia arriba.

Signo de los ángulos: Con la normal positivos los ángulos horarios y con el eje óptico positivos los antihorarios. Con este criterio la ley de la reflexión resulta $\epsilon = -\epsilon$ '

Óptica paraaxial

En ella es válida la aproximación sen $\phi = tg \ \phi = \phi$. En la práctica es válida cuando el objeto es pequeño con relación a las superficies o disponemos de un diafragma que no permite que lleguen rayos cuyo ángulo con el eje sea grande.