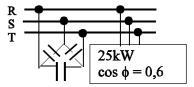

Electrotecnia 2º Bachillerato

Circuitos de corriente trifásica


1. El motor trifásico representado en el esquema adjunto consume 10kW con un factor **R** de potencia $\cos \phi = 0.8$ con sus tres bobinas iguales conectadas en triángulo a una red de 380V 50Hz.

- a- Calcula la intensidad que circula por la línea y por cada fase.
- b- Determina la potencia aparente y la potencia reactiva del motor.
- c- Calcula la impedancia de cada fase y el coeficiente de autoinducción de las bobinas.

R: 19A; 11A;12500 V·A; 7500V·A(r); 34,5 Ω ; 65,9mH

- **2**. Disponemos de una carga que consume 25kW con cos ϕ = 0,6 al conectar a una línea trifásica de 380V 50Hz.
- a- Determina la capacidad de una batería de tres condensadores iguales que es necesario conectar en triángulo y en derivación con la carga para mejorar el factor de potencia hasta $\cos \phi = 0.9$.

b- Calcula la capacidad de los condensadores si se conectaran en estrella para conseguir la misma mejora.

 $R: 1,56 \cdot 10^{-4} F \quad 4,69 \cdot 10^{-4} F$

- **3.** En un taller eléctrico alimentado por una corriente eléctrica trifásica de 380V, 50Hz conectamos tres cargas en paralelo de las siguientes características:
- Carga 1: Un motor trifásico que consume 2,5kW con un factor de potencia 0,8.
- Carga 2: Tres impedancias iguales conectadas en triángulo de valor $Z = 4 + 3j \Omega$
- Carga 3: Tres impedancias iguales conectadas en estrella de valor $Z = 3 4i \Omega$
- a- Calcula la potencia activa, reactiva y aparente de la instalación con los tres elementos en funcionamiento.
- b- Calcula el factor de potencia en esas condiciones y la intensidad de línea.

R:
$$S = 89140 + 30754j \text{ V-A}$$
 $I_L = 144 \text{ A}$

4. Una línea trifásica de 220V 50Hz alimenta un receptor trifásico cuyas impedancias son

$$Z_1 = 3+4j\Omega$$
 $Z_2 = 6-8j\Omega$ $Z_3 = 9+12j\Omega$.

- a- Calcula la intensidad que circula por cada una de las fases y escríbelas en forma compleja.
- b- Calcula la intensidad que circula por cada una de las líneas y escríbelas en forma compleja.
- c- Calcula las potencias aparente, reactiva y activa de cada elemento.
- d-Calcula la potencia aparente, reactiva y activa del conjunto.

R:
$$44_{53^{\circ}}$$
 A; $22_{-66^{\circ}}$ A; $14,7_{66^{\circ}}$ A; $52,8_{-66^{\circ}}$; A; $23,1_{-40^{\circ}}$ A; $33,8_{-85^{\circ}}$ A; $S_{1} = 9680_{53^{\circ}}$ V·A; $S_{2} = 4840_{-54^{\circ}}$ V·A; $S_{3} = 3230_{54^{\circ}}$ V·A; $S_{5} = 10433 + 14358j$ V·A

5. Demuestra que para un receptor trifásico formado por tres impedancias iguales Z conectado a una línea trifásica de voltaje V_L la potencia consumida es tres veces mayor si la conexión es en triángulo que si es en estrella.

Transforma tres impedancias iguales conectadas en triángulo a su equivalente en estrella. Observa que el resultado obtenido es coherente con el del apartado anterior.