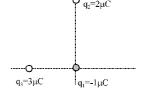
FÍSICA 2º Bachillerato

Problemas de campo electrostático

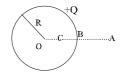
Datos: $K = 9 \cdot 10^9 \text{ S.I.}$


$$m_p = 1.6 \cdot 10^{-27} \text{kg}$$

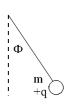
$$m_p = 1.6 \cdot 10^{-27} \text{kg}$$
 $p^+ = +1.6 \cdot 10^{-19} \text{ C}$ $e^- = -1.6 \cdot 10^{-19} \text{ C}$

$$e^{-} = -1.6 \cdot 10^{-19} \text{ C}$$

- 1. Disponemos de dos cargas de -1,25 y +3,75 μC ubicadas en el vacío en los puntos (-4,0) y (4,0)m respectivamente.
- a .Calcula el valor de \mathbf{E} y V en el punto (0,3).
- b. Calcula el trabajo que deberíamos realizar para duplicar la distancia que separa ambas cargas.
- 2. Disponemos de tres cargas de -1, 2 y 3 µC ubicadas en el vacío en los puntos (0,0) (0,4) y (-3,0) m.
- a. Dibuja y calcula el valor de **E** en el punto (-3, 4).
- b. Calcula el potencial en ese punto y la energía potencial eléctrica del conjunto.


R: a. -1784 i + 1399.5 j N/C b. 10.950V; $-2.7 \cdot 10^{-3} J$

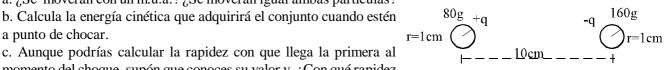
- 3. En una zona del espacio tenemos un campo electrostático constante de valor $E = 10^3 \text{ jN/C}.$
- a. Representa el campo y en él dos superficies equipotenciales, una que contenga al punto (0,0) y otra al (0,1) ordenándolas razonadamente de mayor a menor potencial.
- b. Si en el punto (0,0) de ese campo colocamos un protón inicialmente en reposo y con las aproximaciones justificadas que estimes oportunas, calcula el tiempo que empleará en recorrer 20cm, la velocidad que adquirirá y la diferencia de potencial entre los puntos inicial y final.


R: $2 \cdot 10^{-6}$ s; $2 \cdot 10^{5}$ m/s; -200V

- 4. Una esfera metálica de 1cm de radio se carga a un potencial de 9000V hasta alcanzar el equilibrio electrostático.
- a. Calcula la carga que adquiere y explica razonadamente dónde se ubica la misma.
- b. Calcula el valor del campo en un punto a 2cm del centro de la esfera, en la superficie de la misma y en un punto interior a la esfera a 0,5cm del centro.
- c. Si colocáramos la esfera cargada dentro de una caja de cerillas ¿Qué flujo atravesaría la misma? R: a. 10^{-8} C en la superficie; b. $2,25\cdot10^{5}$ N/C; $9\cdot10^{5}$ N/C; 0 c. 1131N·m²/C
- 5. El sistema representa una esfera conductora de radio R= 2cm y carga +Q=2·10⁻⁸C.
- a. Calcula los valores de E y V en la superficie de la esfera y compáralos con los valores en los puntos A y C siendo OC=R/2 y OA =2R
- b. Explica qué sucedería si la esfera la pusiéramos en contacto con otra esfera conductora de menor tamaño y descargada.
- c. Si el radio de la segunda fuera la mitad del de la primera calcula, razonando, la carga que adquiriría cada una después de ponerlas en contacto.

6. Calcula el valor del campo electrostático horizontal que es necesario para que una partícula puntual de masa m y carga +q conocidas se encuentre en equilibrio en la superficie terrestre sujeta por una cuerda que forma un ángulo Φ con la vertical. (Dar el resultado en función de m, $q y \Phi$).

 $R: m \cdot g \cdot tg \Phi/q$


- 7. Supongamos válida la teoría de Bhor para el átomo de hidrógeno y supuestos conocidos la constante K, la carga del protón y la del electrón así como el radio de la órbita (r).
- a. Determina razonadamente la energía mecánica en órbita.
- b. Determina la energía que deberíamos suministrarle para que pasara a una órbita de radio cuatro veces

R: *a*. $-1/2 \cdot K \cdot e^2/r$ *b*. $3/8 \cdot K \cdot e^2/r$

8. Disponemos, en el aire, de sendas partículas esféricas conductoras en reposo de radio r =1cm y de masas 80g y 160g distantes sus centros 10cm. Las cargamos con la misma carga pero de signo contrario de valor $q = 2 \cdot 10^{-5} C$.

Si las dejamos sometidas únicamente a las fuerzas eléctricas,

- a. ¿Se moverán con un m.u.a.? ¿Se moverán igual ambas partículas?
- a punto de chocar. c. Aunque podrías calcular la rapidez con que llega la primera al
- momento del choque, supón que conoces su valor v, ¿Con qué rapidez llegaría la otra? Explica

d.Calcula la velocidad con que llega al impacto la primera masa, y la energía mecánica que se perdería en el mismo.

R: a. no, no; b. 144J; c. v/2; d. 49m/s; -144J

9.

- a.¿Pueden cortarse las líneas de campo en un punto de un campo electrostático? Explica.
- b.; Qué son las superficies equipotenciales?; Pueden cortarse? ¿ Qué trabajo realizan las fuerzas eléctricas al desplazar una carga sobre ellas? Explica
- c. Si un electrón que se encuentra en un punto de un campo electrostático de potencial 10V pasa a otro punto de potencial 30V ¿aumenta o disminuye y en qué valor su energía potencial electrostática? ¿Iría espontáneamente? Explica.
- d. Demuestra el valor que adquiere el campo electrostático (módulo, dirección y sentido) en un punto exterior a un conductor esférico de radio R cargado con una carga +Q.
- e. Demuestra el valor que adquiere el campo electrostático (módulo, dirección y sentido) entre dos conductores planos de sección S cargados con cargas +Q y -Q separados una distancia d por un dieléctrico.